a2 United States Patent

Motwani

US009294224B2

US 9,294,224 B2
Mar. 22, 2016

(10) Patent No.:
(45) Date of Patent:

(54) MAXIMUM-LIKELIHOOD DECODER IN A
MEMORY CONTROLLER FOR
SYNCHRONIZATION

(735)

Inventor: Ravi Motwani, San Diego, CA (US)

(73) Assignee: Intel Corporation, Santa Clara, CA

Us)

(*) Notice:

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

2]

Appl. No.: 13/991,880

(22) PCTFiled: Sep. 28,2011

(86) PCT No.:

§371 (D),
(2), (4) Date:

PCT/US2011/053663

Jun. 5, 2013

PCT Pub. No.: 'WO02013/048385
PCT Pub. Date: Apr. 4,2013

87

Prior Publication Data

US 2013/0259170 A1l Oct. 3, 2013

(65)

Int. Cl1.
HO3D 1/00
HO4L 27/06
HO4L 1/00
GO6F 11/10
HO3M 13/33

U.S. CL

CPC ... HO4L 1/0054 (2013.01); GOGF 11/1072
(2013.01); HO3M 13/33 (2013.01)

(51)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)

(52)

(58) Field of Classification Search
CPC ... HO4L 1/0054; HO3M 13/33; GO6F 11/1072
USPC ottt 375/341
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,432,803 A 7/1995 Liuet al.
5,912,839 A 6/1999 Ovshinsky et al.
6,950,976 Bl 9/2005 Garrabrant et al.
7.457,155 B2 11/2008 Nazarian
7,590,918 B2 9/2009 Parkinson
7,600,078 Bl 10/2009 Cen et al.
7,756,053 B2 7/2010 Thomas et al.
7,913,147 B2 3/2011 Swaminathan et al.
7,984,360 B2 7/2011 Sharon et al.
8,462,537 B2 6/2013 Karpov et al.
8,462,577 B2 6/2013 Zeng et al.
8,463,948 Bl 6/2013 Qawami et al.
(Continued)
OTHER PUBLICATIONS

International Search Report & Written Opinion mailed Feb. 28,2012
for Int’l Patent Application No. PCT/US2011/053663.

(Continued)

Primary Examiner — Erin File

(74) Attorney, Agent, or Firm — Blakely, Sokoloff, Taylor &
Zafman LLP

(57) ABSTRACT

Described herein are apparatus, system, and method for data
synchronization via a maximum-likelihood decoder in a
memory controller. The method comprises receiving a con-
strained codeword from a non-volatile memory (NVM) via a
channel, the constrained codeword including an appended
bit-stream; and decoding the received constrained codeword
by reconstructing the appended bit-stream and invoking a
synchronization procedure that applies a maximum-likeli-
hood (ML) estimator to estimate locations of any insertion,
deletion, or error in the reconstructed appended bit-stream.

30 Claims, 8 Drawing Sheets

109

System on Chip

Non-volatile Memory

102
1184

108

Memory Controller

Memory 1
118;

CPU
114

Display
Unit
118

Host
110

Encoder 104

Memory 2

118n4

Memory N-1
118y

R

Memory N

US 9,294,224 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

8,539,323 B2* 9/2013 Huietal. ... 714/794

8,549,380 B2 10/2013 Motwani
8,549,382 B2 10/2013 Motwani
8,605,531 B2 12/2013 Kau
8,607,089 B2 12/2013 Qawami et al.
8,612,676 B2 12/2013 Dahlen et al.
8,612,809 B2 12/2013 Casper et al.
8,649,212 B2 2/2014 Kau et al.
8,667,360 B2 3/2014 Motwani
8,838,935 B2 9/2014 Hinton et al.

2003/0167438 Al*
2007/0005922 Al
2007/0223618 Al
2008/0034148 Al
2008/0065812 Al*
2008/0270811 Al
2010/0070692 Al
2010/0131827 Al
2010/0146372 Al*
2010/0291867 Al
2010/0293317 Al
2010/0306446 Al
2010/0306453 Al
2010/0318718 Al 12/2010 Eilertet al.

2011/0153916 Al 6/2011 Chinnaswamy et al.
2011/0249495 Al* 10/2011 Choetal. 365/185.03
2011/0291884 Al 12/2011 Ohetal.

9/2003 AZIZ oo 714/767
1/2007 Swaminathan et al.
9/2007 Jeong et al.
2/2008 Gower et al.
3/2008 Lietal. ..cocooooiviieinnns 711/103
10/2008 Chow et al.
3/2010 Litsyn et al.
5/2010 Sokolov et al.
6/2010 Tomlinson et al. 714/780
11/2010 Abdulla et al.
11/2010 Confalonieri et al.
12/2010 Villa et al.
12/2010 Doller

2012/0020155 Al* 12012 Kim ..o, 365/185.03
2012/0166897 Al* 6/2012 Franca-Neto etal. 714/721
2012/0269282 Al* 10/2012 Jinetal. ..o 375/267

2013/0282967 Al
2014/0075107 Al

10/2013 Ramanujan
3/2014 Qawami et al.

OTHER PUBLICATIONS

Lee etal., “Architecting Phase Change Memory as a Scalable DRAM
Alternative”, ISCA °09, Jun. 20, 2009, 12 pgs., Austin, Texas, USA.
Condit et al., “Better /O Through Byte-Addressable, Persistent
Memory”, SOSP *09, Oct. 11, 2009, pp. 133-146. Big Sky, Montana,
USA.

Freitas et al., “Storage-class memory: The next storage system tech-
nology”, IBM J. Res. & Dev., Jul./Sep. 2008, pp. 439-447, vol. 52,
No. 4/5.

Akel et al.,, “Onyx: A Prototype Phase Change Memory Storage
Array”, www.flashmemorysummit.com/.../Proceeding 2011/08/
11_S301_ Akel.pdf, 5 pgs.

Mearian, “IBM announces computer memory breakthrough Phase-
change memory offers 100 times the write performance of NAND
flash”, Jun. 30, 2011, 3 pgs.

Caulfield et al., “Moneta: A High-performance Storage Array Archi-
tecture for Next-generation, Non-volatile Memories”, Micro 43: Pro-
ceedings of the 43rd Annual IEEE/ACM International Symposium
on Microarchitecture, Atlanta, GA Dec. 2010 pp. 385-395.

“The Non-Volatile Systems Laboratory Coding for non-volatile
memories”, http://nvsl.ucsd.edu/ecc, printed Sep. 1, 2011. 2 pgs.
“The Non-Volatile Systems Laboratory Moneta and Onyx: Very Fast
SS”, http://nvsl.ucsd.edu/moneta/, 3 pgs.

“The Non-Volatile Systems Laboratory NV-Heaps: Fast and Safe
Persistent Objects”, http://nvsl.ucsd.edu/nvuheaps/, 2 pgs.

“Phase change memory-based ‘moneta’ system points to the future of
computer storage”, ScienceBlog, Jun. 2, 2011, 7 pgs.

Quereshi et al., “Scalable High Performance Main Memory System
Using Phase-Change Memory Technology”, ISCA °09, Jun. 20,
2009, 10 pgs., Austin, Texas, USA.

“Compressed NVRAM based Memory Systems”, 9 pgs.

Bailey et al., “Operating System Implications of Fast, Cheap, Non-
Volatile Memory” 13th USENIX, HOTOS11 2011, May 9-11, 2011,
5 pgs.

Raoux et al., “Phase-change random access memory: A scalable
technology”, IBM J. Res. & Dev., Jul./Sep. 2008, pp. 465-479, vol.
52, No. 4/5.

Chen et al., “Rethinking Database Algorithms for Phase Change
Memory”, 5th Biennial Conference on Innovative Data Systems
Research (CIDR ’11), Jan. 9, 2011, 11 pgs., Asilomar, California,
USA.

Jacob et al., “The Memory System You Can’t Avoid It, You Can’t
Ignore It, You Can’t Fake It”, 2009, 77 pgs., Morgan & Claypool.
Mogul et al., “Operating System Support for NVM+DRAM Hybrid
Main Memory”, 12th Workshop on Hot Topics in Operating Systems
(HatOS XII), May 18, 2009, 9 pgs.

PCT Notification concerning Transmittal of International Prelimi-
nary Report on Patentability (Chapter I of the Patent Cooperation
Treaty) for PCT Counterpart Application No. PCT/US2011/053663,
7 pgs., (Apr. 10, 2014).

Notice of Allowance in counterpart Korean Application No. 10-2014-
7008374, mailed Jan. 14, 2016, 2 pages, partial translation.

* cited by examiner

US 9,294,224 B2

Sheet 1 of 8

Mar. 22, 2016

U.S. Patent

\ N Alowop

AOWwsp\ Sii1BjOA-UCN

el
J8ZIUDIUOUAS

90} epodag

611 8p0DH
PBUIBIISUDD

PoIPOWy
$01 Jepoous

801

Jaonuon Aowap

601
diyn uo WesAg

t
t
t
t
i
i
i
i
l
” E—
LTH)
l
-N Alowse
| \\ L-N N
|
L ENgLYL
|
t
!
!
!
|
!
! Z Aowan
-
8Ll
!
| AIOWON
.
8Ll
“ col
}
}
!
|
|

(432

9l
Hn
Aeidsig

il
NdO

oLl
1SOH

U.S. Patent

o
™N

Mar. 22, 2016

Sheet 2 of 8

W
Q A
~ e
o g = N~
e poust ™~
e Ll
N~
& - _
Nl T) ©
-—
— s 1 -
(o]
& g
S /" () w0
. S
N g |-
w0
o .
N U
T - (e} <t
N S |
S) -
0 d
-
o
& o
. - -
- \ o 3
R g L
(32}
e —
N T
N~ - ~]
=t &
. =3
N
(e} .
SN e
~ —.v/r/ : -
\\\\ =1~
\ -
A e
N \\\ /"/
T —fjo
{ - ot
\ -
L

sjjo0 Jo Jequinn

US 9,294,224 B2

Threshold Voltage

FIG. 2

US 9,294,224 B2

Sheet 3 of 8

Mar. 22, 2016

U.S. Patent

€ Old

20¢
weas-1q
papuadde psjonssuodal a8y} ul 10118 10 ‘Uonslsp
‘uoiIasUl Aue JO SUOIBD0| 8)}eWIIS 0} JOJRWINSS
TN seidde jey; ainpadsoid uoneziuoiyouis
e BupjoAul pue wees)s-1iq pepuadde
8y} pajonnsuooal Ag DO PaAISDDL 8} 8p0ooa(]

L0E
weaus-)ig pepusdde Buiney DO ‘INAN WO
(DODIN) plomapoo pauleljSuod Payipow dAI908Y

o
o
™

US 9,294,224 B2

" QT9SLETOTSHITLSIPET

Sheet 4 of 8

T (919H90L90L K L0L)
“{91990LHO0LNLOY)

1481%

1{0) 4

OIS L COTSPOTLLSOPLTLOTIOSPLOTIL IS PELISFOTIOTT

Mar. 22, 2016

U.S. Patent

U.S. Patent Mar. 22, 2016 Sheet 5 of 8 US 9,294,224 B2

@2
Q
]

initialize the to be appended bit-stream to a NULL stream
501

Appending a one-bit to the appended bit-stream when the
special pattern is mapped to another pattern
502

Appending a zero-bit to the appended bit-stream when the
special pattern remains unchanged
503

Inserting bits that indicate which of a special pattern, for
among the special patterns, occurred in an input
504

Appending a predetermined bit pattern, at the end of the
appended bit-stream, to terminate the Trellis
505

FIG. 5

U.S. Patent Mar. 22, 2016 Sheet 6 of 8 US 9,294,224 B2

Comparing the reconstructed appended bit-stream
with a noisy appended bit-stream which includes
errors and insertions or deletions

(®)]
(o]
O

601
: No Already
?
M'sgloathh I S— »1 Synchronized
603
| Yes, begin

y synchronization

Computing deletion probabilities in the reconstructed
appended bit-stream
604

Computing insertion probabilities in the reconstructed
appended bit-stream
605

Generating a Trellis to determine a location and
pattern of a most likely insertion or deletion in the
reconstructed appended bit-stream having states

with associated the deletion and insertion
probabilities
606

Mapping a pattern, in the reconstructed appended

bit-stream, at the most likely location with the most

likely insertion or deletion determined by the Trellis
607

FIG. 6

U.S. Patent Mar. 22, 2016 Sheet 7 of 8 US 9,294,224 B2

700

timemndex 1234567891011 121314 15
A 1101010100 0 1 1 11
1010101000 1 1 1 0 1

FIG. 7 %*-&‘ -

U.S. Patent Mar. 22, 2016 Sheet 8 of 8 US 9,294,224 B2

1400 1378 1310 Processor ‘
1312 | 1305
1378 Processing core 1 |
Memory +—14 0 { G . P N
1330 \JE‘ M rocessor
1312N Y
Volatile Memory Processing core N |
1332 ;
1314 1316
: > vcH ~ Cache Memory
Non-volatile R
Memory 1317
1334 P-P
1378
v 1378
Y 1320 Chipset | 1322 j
1340 i P-P
Display VF 1324
device > YF
l ~ 1350
o g
] I 1378]
1372 1376 1374
Bus Bridge Smart TV 11O devices
/_ 1355
| ! ! 1
. 1360 1362 1364 1366 j
. Non- Storage medium Keyboard/Mouse | | Network interface |
volatile i |
_______ Memory
1377 1378
Consumer
Electronics (e.g., j
1380 FIG. 8 PDA, Smart
Solid State Drive Phone, Tablet
etc)

US 9,294,224 B2

1
MAXIMUM-LIKELIHOOD DECODER IN A
MEMORY CONTROLLER FOR
SYNCHRONIZATION

CLAIM OF PRIORITY

This application claims the benefit of priority of Interna-
tional Patent Application No. PCT/US2011/053663 filed Sep.
28, 2011, titled “MaxmuM-LxeLIHOOD DECODER IN A MEMORY
CoNTROLLER FOR SyncHRONIZATION,” which is incorporated by
reference in its entirety.

FIELD OF THE INVENTION

Embodiments of the invention relate generally to the field
of'non-volatile memories. More particularly, embodiments of
the invention relate to an apparatus, system, and method for
data synchronization via maximum-likelihood decoding in a
memory controller.

BACKGROUND

Flash memory (e.g., NAND Flash memory) comprises of
grid of cells arranged in a rectangular lattice. A cell is a
floating gate and the information is stored as charge in these
floating gates. A multi-level-cell (MLC) stores more than one
bit per cell. Programming of a cell in NAND Flash is attained
by Fowler-Nordhiem tunneling until the ideal programmed
voltage is attained. However, due to programming time con-
straints, some tolerance is accepted and the actual pro-
grammed voltage is allowed to be within some range of the
ideal value.

The read level is a random variable with some distribution
around the mean programming level. Errors occur during
reads because of overlaps of the level distributions. If the raw
bit error rate (RBER) has to be kept low, the distributions must
be narrow. One possible reason why the distributions are
broadened is the capacitive coupling between neighboring
cells. This phenomenon is called inter-cell-interference (ICI).
ICI is caused due to floating-gate to floating-gate coupling,
and can be from mild to extreme.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention will be understood more
fully from the detailed description given below and from the
accompanying drawings of various embodiments of the
invention, which, however, should not be taken to limit the
invention to the specific embodiments, but are for explanation
and understanding only.

FIG. 1 is a high level system with non-volatile memory for
data synchronization via maximum-likelihood decoding in a
memory controller, according to one embodiment of the
invention.

FIG. 2 is a voltage level distribution of 3 bits per cell for 8
levels.

FIG. 3 is a high level flowchart of a method for data syn-
chronization via a maximum-likelihood decoder, according
to one embodiment of the invention.

FIG. 4 is an example of a reconstructed appended bit-
stream that mismatches with a noiseless appended bit-stream
to trigger data synchronization, according to one embodiment
of the invention.

FIG. 5 is a flowchart of an encoding method for generating
a modified constrained code which is used for data synchro-
nization via maximum-likelihood decoding, according to one
embodiment of the invention.

20

40

45

50

2

FIG. 6 is a flowchart of a decoding method for data syn-
chronization via maximum-likelihood decoding, according
to one embodiment of the invention.

FIG. 7 is an exemplary Trellis for data synchronization for
recovery from insertion and deletion errors, according to one
embodiment of the invention.

FIG. 8 is a system level diagram comprising a processor
and/or memory controller for data synchronization via maxi-
mum-likelihood decoding, according to one embodiment of
the invention.

SUMMARY

Embodiments of the invention relate to apparatus, system,
and method for data synchronization via maximum-likeli-
hood decoding in a memory controller coupled to a non-
volatile memory (NVM).

In one embodiment, the method comprises: receiving a
constrained codeword from a non-volatile memory (NVM)
via a channel, the constrained codeword including an
appended bit-stream; and decoding the received constrained
codeword by reconstructing the appended bit-stream and
invoking a synchronization procedure that applies a maxi-
mum-likelihood (ML) estimator to estimate locations of any
insertion, deletion, or error in the reconstructed appended
bit-stream.

In one embodiment, a memory controller (apparatus) com-
prises: a decoder to: receive a constrained codeword from a
NVM via a channel, the constrained codeword including an
appended bit-stream; and decode the received constrained
codeword by reconstructing the appended bit-stream and
invoking a synchronization procedure that applies a ML esti-
mator to estimate locations of any insertion, deletion, or error
in the reconstructed appended bit-stream.

In one embodiment, the system comprises: a solid state
drive (SSD) comprising a memory controller coupled to a
NVM via a channel, the memory controller comprises: a
decoder to: receive a constrained codeword from the NVM
via the channel, the constrained codeword including an
appended bit-stream; and decode the received constrained
codeword by reconstructing the appended bit-stream and
invoking a synchronization procedure that applies a ML esti-
mator to estimate locations of any insertion, deletion, or error
in the reconstructed appended bit-stream; and a display unit
to display contents stored in the SSD.

In one embodiment, an article of manufacture comprises a
machine storage medium containing machine executable
instructions that when executed cause a processor to perform
a method, the method comprising: receiving a constrained
codeword from a NVM via a channel, the constrained code-
word including an appended bit-stream; and decoding the
received constrained codeword by reconstructing the
appended bit-stream and invoking a synchronization proce-
dure that applies a ML estimator to estimate locations of any
insertion, deletion, or error in the reconstructed appended
bit-stream.

While the invention in this summary has been described in
conjunction with specific embodiments thereof, many alter-
natives, modifications and variations of such embodiments
will be apparent to those of ordinary skill in the art in light of
the foregoing description. The embodiments of the invention
are intended to embrace all such alternatives, modifications,
and variations as to fall within the broad scope of the
appended claims.

DETAILED DESCRIPTION

Embodiments of the invention relate to apparatus, system,
and method for data synchronization via maximum-likeli-

US 9,294,224 B2

3

hood decoding in a memory controller coupled to a non-
volatile memory (NVM). To combat ICI as discussed in the
background section, constrained coding is a possible solu-
tion. Constrained coding entails forbidding certain adjacent-
cell charge-level combinations. There can be various types of
constrained codes, one type of constrained codes assumes
that level information is available while decoding all pages.
However, due to read latency requirements, level information
may not be available while reading all pages. Furthermore,
error propagation degrades the process of constrained decod-
ing resulting in incorrect decoding of data.

The embodiments herein describe a modified constrained
code which does not need level information while decoding
all pages in the NVM. The technical effect of the modified
constrained code is that the average read latency is reduced
because level information is not required while decoding the
lower and middle page. Furthermore, efficient synchroniza-
tion is possible at the decoding end. Embodiments discussed
herein reduce and/or eliminate error propagation, which is a
crucial degrading factor for decoding variable length con-
strained codes, by using the modified constrained code which
is robust to channel noise. The embodiments herein also
describe a decoding algorithm for data synchronization that
reduces (contains) error propagation.

In the following description, numerous details are dis-
cussed to provide a more thorough explanation of embodi-
ments of the present invention. It will be apparent, however, to
one skilled in the art, that embodiments of the present inven-
tion may be practiced without these specific details. In other
instances, well-known structures and devices are shown in
block diagram form, rather than in detail, in order to avoid
obscuring embodiments of the present invention.

Note that in the corresponding drawings of the embodi-
ments, signals are represented with lines. Some lines may be
thicker, to indicate more constituent signal paths, and/or have
arrows at one or more ends, to indicate primary information
flow direction. Such indications are not intended to be limit-
ing. Rather, the lines are used in connection with one or more
exemplary embodiments to facilitate easier understanding of
a circuit or a logical unit. Any represented signal, as dictated
by design needs or preferences, may actually comprise one or
more signals that may travel in either direction and may be
implemented with any suitable type of signal scheme.

Inthe following description and claims, the term “coupled”
and its derivatives may be used. The term “coupled” herein
refers to two or more elements which are in direct contact
(physically, electrically, magnetically, optically, etc.). The
term “coupled” herein may also refer to two or more elements
that are not in direct contact with each other, but still cooper-
ate or interact with each other.

As used herein, unless otherwise specified the use of the
ordinal adjectives “first,” “second,” and “third,” etc., to
describe a common object, merely indicate that different
instances of like objects are being referred to, and are not
intended to imply that the objects so described must be in a
given sequence, either temporally, spatially, in ranking or in
any other manner.

FIG. 1is ahigh level memory system 100 for data synchro-
nization via maximum-likelihood decoding in a memory con-
troller, according to one embodiment of the invention. In one
embodiment, the system 100 comprises a solid-state drive
(SSD) 101. In one embodiment, the system 100 comprises a
system on chip (SOC) 109 including a memory controller
108, and a processor 114 coupled to the memory controller
108. In one embodiment the memory controller 108 com-
prises an encoder 104 which is operable to generate a modi-
fied constrained code 119 that can be used for data synchro-

5

10

15

20

25

30

35

40

45

50

55

60

65

4

nization. In one embodiment, the memory controller 108
comprises a decoder 106 with a synchronizer 120 to contain
error propagation by synchronizing any mismatches in the
data pattern (explained below with reference to FIGS. 2-7). In
one embodiment, the SOC 109 includes other components,
for example, a wireless antenna, memory, processor, etc.

In one embodiment, the SOC 109 communicates with the
host 110 via a Serial Advance Technology Attachment
(SATA) input-output (I/O) bus 112. In one embodiment, the
SOC 109 communicates with the host 110 via a Serially
Attached Small System Computer (SAS) input-output (I/O)
bus 112. In other embodiments, other types of buses can be
used for 112 without changing the essence of the embodi-
ments, for example, any of a Small Computer Systems Inter-
face (SCSI) input-output (I/O) bus, a Fiber Channel (FC)
input-output (I/O) bus, a SCSI over Internet input-output
(I/0) bus (iSCSI), or a Universal Serial Bus (USB) input-
output (I/O) bus, Peripheral Component Interconnect
Express (PCle), etc.

In accordance with such embodiments, if the host 110 is to
exchange data and/or commands with a memory device 101
in accordance with a SCSI protocol, the SCSI protocol may
comply and/or be compatible with the protocol described in
American National Standards Institute (ANSI) Small Com-
puter Systems Interface-2 (SCSI-2) ANSI/International
Committee for Information Technology Standards (INCITS)
131-1994 Specification.

In one embodiment, the SOC 109 and the NVM 102 is part
of the SSD 101. In one such embodiment, the SOC 109
includes an NVM controller. In one embodiment, the SSD
101 is positioned inside a personal computer, a tablet, a smart
phone (also referred to as a smart device), etc. In one embodi-
ment, the memory controller 108 and/or the SOC 109 is a
standalone integrated circuit coupled to the host 110 and the
NVM 102. In another embodiment, the memory controller
108 and/or the SOC 109 is integrated in the host 110.

In one embodiment, the host 110 comprises a processor
114. In one embodiment, the processor 114 in the host 110 is
a micro-processor designed and manufactured by INTEL
CORP. of Santa Clara, Calif. In another embodiment, other
processors made and designed by other vendors may be used
for the host 110. In one embodiment, the host 110 is one of a
personal computer, server, client, laptop, smart-phone, and/or
tablet, etc. Embodiments may have one or multiple NVMs
118, _,, coupled to the memory controller 108. While some
embodiments are described with respect to the memory con-
troller 108 communicating with the host 110 and the NVM
102, it is understood that embodiments also operate with the
SOC 109 communicating with the host 110 and the NVM
102.

In one embodiment, the non-volatile memory 102 is a
random-access non-volatile memory (NVMRAM). In one
embodiment, the NVM 102 is part of an SSD. In one embodi-
ment the NVM 102 is a NAND flash memory having pages of
data. In one embodiment the NVM 102 is a NOR flash
memory. In one embodiment, the NVM 102 is one of a phase
change memory (PCM), stacked PCM (PCMS, also referred
to as PCM and switch), read-only memory (ROM), electri-
cally erasable programmable read-only memory (EEPROM),
or any other type of NVM device. In one embodiment, the
NVM 102 is a removable drive, e.g., a Universal Serial Bus
(USB) memory stick, flash card, etc.

In one embodiment, the host 110 is coupled to a display
unit 116. In one embodiment, the display unit 116 is a touch
pad which is operable to display the contents stored in the
NVM 102.

US 9,294,224 B2

5

FIG. 2 is avoltage level distribution 200 of 3 bits per cell for
8 levels. The x-axis represents threshold voltage levels of a
cell, of a flash memory from among memories 118, _, for a
number of encoded levels. The y-axis represents normalized
number of cells. As mentioned in the background section,
Multi-level-cell (MLC) flash memory comprises cells which
can be programmed to multiple voltage levels. MLLC flash
memory systems support a number of bits per cell, for
example, 3 bits/cell, 4 bits/cell, etc. For 3 bits/cell to 4 bits/
cell, individual cells are programmed to 8 or 16 distinct levels
respectively. Due to capacitive coupling between neighboring
cells, the threshold voltage of the cells depends on the cou-
pling with the neighboring cells and their charge. This effect,
known as inter-cell interference (ICI), causes the level distri-
bution of the cells to broaden, effectively increasing the raw
bit error rate (RBER).

One way to mitigate ICI is to use constrained codes. Each
cell contains one bit for one page, i.e. each bit in a multi-bit
cell is associated with a different page. For an embodiment
with 3 bits/cell, a first bit corresponds to a lower page, a
second bit corresponds to a middle page, and a third bit
corresponds (is associated with) an upper page. As shown in
FIG. 2, each cell can be programmed to 8 distinct levels
201-208 and each level corresponds to 3 bits of information.
The bits corresponding to each voltage level distribution is
mappedto a level. In this exemplary embodiment, bits 111 are
mapped to level-0 (LO 201), bits 011 are mapped to level-1
(L1 202), bits 001 are mapped to level-2 (1.2 203), bits 101 are
mapped to level-3 (L3 204), bits 100 are mapped to level-4
(L4 205), bits 000 are mapped to level-5 (L5 206), bits 010 are
mapped to level-6 (L6 207), and bits 110 are mapped to
level-7 (L7 208). In other embodiments, other forms of map-
ping may be used.

During the read operation, the memory controller requests
page information from the NVM, for example, the controller
can request a lower page read from the NVN 102. For lower
page read, threshold voltage level R1 is used and the bits are
read out from the cell using R1. If traditional constrained
coding is applied, then the bit information is not enough, level
information is also needed for decoding the constrained code.
Since the constrained code maps level information to bit
information, to decode any page (whether upper, middle or
lower), level information becomes mandatory. Such tradi-
tional constrained codes cause higher read latency which can
become a performance bottleneck.

Embodiments discussed herein describe a modified con-
strained code 119 generated by the encoder 104. In one
embodiment, the modified constrained code 119 does not
need level information for encoding/decoding all pages as
needed by the traditional constrained code. So as not to
obscure the embodiments of the invention, the embodiments
discussed herein use a 3 bit/cell example with seven levels.
However, the embodiments can be used for any number of
bits per cell.

In one embodiment, the modified constrained code elimi-
nates or almost eliminates ICI for special patterns. One
example of a special pattern is a level-7-level-0-level-7 pat-
tern (L.7-L0-L7). ICI is most severe for the special patterns
since two high charge aggressors drift the threshold voltage
for level-0 (LO). In the following embodiments, level-7-level-
0-level-7 special patterns are abbreviated as 7-0-7.

Though only three special patterns (7-0-7, 7-0-6, and 6-0-
7) are considered in the embodiments, the method can be
generalized for any set of forbidden patterns (one or more
patterns). The term “forbidden pattern” (also called special
patterns) herein refers to level patterns that exhibit severe ICI

35

40

45

55

6

because high charge aggressors (e.g., L7) drift the threshold
voltage of a low charge victim (e.g., LO).

In one embodiment, the constrained decoder 106 needs
level information for only decoding the upper page. In such an
embodiment, the data of the lower and middle page is not
impacted by the constrained encoding. The embodiments
discussed herein can also be customized to design con-
strained codes which need level information for decoding the
upper and middle pages but not the lower page. Hence,
depending on the read latency requirements, the embodi-
ments can be customized to requirements on level informa-
tion availability.

FIG. 3 is a high level flowchart 300 of a method for data
synchronization via the maximum-likelihood decoder 106 in
the memory controller 108, according to one embodiment of
the invention. FIG. 3 is discussed with reference to FIGS. 1-2.
In one embodiment, the encoder 104 generates the modified
constrained code 119. In one embodiment, the modified con-
strained code 119 is stored in the NVM 102 (e.g., in one of the
memories 118,). In one embodiment, at block 301 the
modified constrained code 119 stored in the NVM 102 is
received by the decoder 106, where the modified constrained
code 119 (discussed with reference to FIG. 4) includes an
appended bit-stream corresponding to the three special pat-
terns, bits indicating which of a special pattern occurred in the
data pattern, and a termination pattern to terminate a Trellis
(discussed with reference to FIG. 7).

At block 302, the decoder 106 invokes the synchronizer
120 that applies a maximum-likelihood estimator to estimate
location of any insertion, deletion, or error in a reconstructed
appended-bit stream. In the embodiments discussed herein
the synchronizer 120 reduces/contains error propagation in
the system 100.

FIG. 4 is an example 400 of the reconstructed appended
bit-stream that mismatches with a noiseless appended bit-
stream to trigger data synchronization by the synchronizer
120, according to one embodiment of the invention. The
embodiment of FIG. 4 is an illustrating embodiment to illus-
trate by example when the data synchronizer 120 is invoked.

In one embodiment, the lower, upper and middle page bits
are input to the constrained encoder 104 which maps these
bits to levels. As mentioned above with reference to FIG. 2,
the mapping from bits to levels consists of clubbing 3-bits at
atimeto generate one level. In one embodiment, the mapping
of the bits is chosen to minimize the RBER. The extra bits
generated by the constrained encoder are referred herein as
appended bits. In one embodiment, the appended bit-stream
is initialized to a null stream.

In one embodiment, the input which comprises of a
sequence of levels is scanned from left to right by the encoder
104, where one level is incremented to the right every clock
(and two levels if the last three levels are 7-0-7 or 6-1-6) and
five consecutive levels are observed. In one embodiment, if a
7-0-7 pattern is seen as the last 3 levels in the five-tuple levels,
it is replaced by a 6-1-6 pattern and the appended bit-stream
is appended with a one-bit. In one embodiment, if a 6-1-6
pattern is seen in the last 3 levels in the 5-level pattern, the
appended bit stream is appended with a zero-bit. In one
embodiment, at the end of encoding the level information, the
appended bit-stream is converted by the encoder 104 into
levels and these levels are appended to the encoded level
stream to create the modified constrained codeword 119.

In one embodiment, the encoder 104 only changes level-7
to level-6 and level-0 to level-1. In such an embodiment, the
bits of the lower and middle page are left untouched by the
encoding performed by the encoder 104. In one embodiment,
the decoding, by the decoder 106, of the lower and middle

US 9,294,224 B2

7

page can be done without the knowledge of the level infor-
mation. In one embodiment, the appended bit-stream is a
variable length bit-stream. In one embodiment, the length of
the appended bit-stream is a function of the input levels. In
one embodiment, the length of the appended bit-stream is
fixed to reduce the amount of overhead.

In one embodiment, the overhead size N is determined by
aprobability function N(p,m), where ‘p’is the probability that
the number of the special pattern 7-0-7 is smaller than a fixed
number ‘m.” In one embodiment, if the overhead size is fixed,
the appended bit-stream length is fixed and it is initialized to
all-zero bits.

In applications supporting variable length overheads, there
can still be spurious 7-0-7 patterns in the overhead level
information. For variable length overheads, the average rate
of the code can be computed. Assuming perfect source cod-
ing, the input levels will have uniform distribution. Of all the
three-tuple levels, one extra bit is required for two patterns
only. Since overhead bits are mapped to levels, for every
three-tuple levels, on an average 2/(8°3) levels are added.
Hence, the average rate of this variable-rate constrained code
is 8%/(8°+2/3)=0.9987.

The following example illustrates the mapping for noise-
less conditions. In one embodiment, the decoder 106 has a
pointer to the appended bit-stream which is initialized to
point to the first bit of the stream. In one embodiment, the
encoded sequence of levels is scanned from left to right in
increments of one level at each decode instant. In one embodi-
ment, during each decode, 5 consecutive levels are observed
and if a 6-1-6 pattern is seen as the last three levels in the
5-level read, one bit in the appended bit-stream pointed by the
pointer is read. In one embodiment, if this bit is a 0, the level
information is left unchanged. In one embodiment, if the bitis
a 1, then the 6-1-6 pattern is changed to a 7-0-7 pattern. It is
understood that the mapping can be reversed.

In one embodiment, the pointer is incremented to point to
the next bit in the appended bit-stream. The invertibility of the
mapping can be easily seen in the case of noiseless read. On
the same construction principle, it is possible to construct
constrained codes which eliminate (or almost eliminate) the
7-0-7, 7-0-6, and 6-0-7 patterns by mapping them to a 6-1-6,
7-1-6 and 6-1-7 patterns respectively (invertibility has to be
ensured by proper encoder modification), according to one
embodiment. The six patterns are referred herein as the spe-
cial patterns.

In one embodiment, a one bit is appended to the appended
bit-stream if the pattern is changed and a zero bit if the pattern
is unchanged. Since there are six patterns which can add one
bit (1/3 levels) to the appended bit-stream, the average rate of
this constrained code is 8%/(6/3+8%)=0.9961.

The data pattern 401 corresponds to a bit pattern in the form
of levels. The bold and underlined level patterns correspond
to the special patterns that cause the most ICI. The data
pattern 401 is to be constrained encoded by the encoder 104.
The data pattern 402 corresponds to constrained encoded
code. The bold and underlined level patterns are the mapped
patterns that map the bold and underlined special patterns of
401. As mentioned above, the sequences of special data pat-
terns 7-0-7, 6-0-7, and 7-0-6 are mapped to sequences 6-1-6,
6-1-7, and 7-1-6 respectively. An appended bit stream 1110 is
appended to the data pattern 402 which indicates that a special
data pattern has been mapped to a new sequence. The
appended bit-stream of 1110 in the above example is then
mapped to the appended level-stream of level-0 (see 201 of
FIG. 2) to form the modified constrained code 119.

Due to the broadened level distributions, a 6-1-6 pattern or
6-1-7 pattern or 7-1-6 pattern can read to a different (non-

20

35

40

45

50

8

special) pattern. Alternately, a non-special pattern can be read
out as a special pattern. This can cause error propagation since
it oft-tracks the appended bit-stream alignment with respect
to the special pattern information. In one embodiment, an
error in the appended bit-stream does not lead to error propa-
gation since it is localized to its concerned pattern only. In
order to keep the error propagation in check, the modified
constrained code 119 is used, according to one embodiment.

In one embodiment, instead of appending one bit whenever
one of the special pattern occurs (to indicate modification or
no modification), three more bits are appended by the encoder
104 to indicate which of the six patterns occurred. In such an
embodiment, a total of six special patterns have to be
encoded, and three bits suffice. In one embodiment, four bits
are appended for every special pattern. Hence for an average
of 8 patterns, 24 bits are appended, giving an average rate of
8%/(24/3+8%)=0.9865 for the modified constrained code 119.

The embodiments herein are described with reference to a
MLC which is 3 bit/cell NAND flash memory. The same
concepts can be used for any number of bits per cell without
changing the essence of the embodiments of the invention.

In one embodiment, during the read operation, the levels
read are input to the decoder 106. In one embodiment, the
special pattern information of the appended bit-stream is
reconstructed from the read levels of the modified constrained
code. This reconstructed stream is referred herein as the
reproduced appended bit-stream.

In one embodiment, the special pattern information from
the read appended bit-stream of the flash is then compared to
the reproduced appended bit-stream. In the noiseless case, the
reproduced appended bit-stream and the flash read appended
bit-stream are the same. Assuming no errors in the appended
bit-stream read, the noise in the level reads leads to an inser-
tion/deletion channel.

The term “deletion” herein refers to a deletion in the modi-
fied constrained code read to the decoder 106. A deletion
occurs if any of the special patterns is read as a non-special
pattern. This causes loss of special pattern logging to occur in
the reproduced appended bit-stream.

The term “insertion” herein refers to an insertion of data in
the modified constrained code read to the decoder 106. An
insertion occurs if a pattern which is not special is read out as
a special pattern. This causes logging of non-special pattern
as special pattern in the reproduced appended bit-stream.

In one embodiment, the reconstructed appended bit-stream
is compared with the noisy appended bit-stream by the
decoder 106. By comparing the reconstructed appended bit-
stream and the noisy appended bit-stream synchronization
can be attempted by the synchronizer 120, according to one
embodiment. There can also be errors in the noisy appended
bit-stream. In one embodiment, synchronization between the
two sequences can be obtained by estimating positions of
insertions, deletions, and errors. In one embodiment, the esti-
mator in the synchronizer 120 which maximizes the probabil-
ity of the reconstructed appended bit-stream conditioned on
the read appended bit-stream is the maximum-likelihood
(ML) estimator. In one embodiment, the ML estimator is the
Viterbi detector is to recover from insertions, deletions and
errors.

In one embodiment, the synchronizer 120 invokes the ML,
estimator when there is loss of synchronization between the
two sequences—reconstructed appended bit-stream and the
noisy appended bit-stream. In one embodiment, the estimator
of the synchronizer 120 is operable to estimate if insertion,
deletion, or error has occurred depending on which event has
highest probability. Once synchronization is obtained, the

US 9,294,224 B2

9

catastrophic error propagation due to off-alignment of the
special patterns and the appended bit-stream is avoided.

Continuing with the example of FIG. 4, the data pattern 403
represents the noisy levels readout by the decoder 106. The
first 7-0-7 of 401, mapped to 6-1-6 in 402 by the encoder 104,
is read-out as 6-1-5 in 403 by the decoder 106 as a deletion.
The data pattern 5-1-7 of 402 is mapped to the 6-1-7 in 403
causing an insertion in the reconstructed appended bit-
stream. In the appended bit-stream reconstructed from the
noisy levels readout, the patterns reconstructed are (607)
(706)(706)(616) . . . as shown by 404. The noiseless appended
bit-stream readout would indicate levels
(707)(706)(706)(616) . . . as shown by 405. In one embodi-
ment, the synchronizer 120 invokes a synchronization algo-
rithm to map the reconstructed appended bit-stream to the
noisy appended bit-stream to find out the insertions/deletions
and errors in the reconstructed appended bit-stream.

In one embodiment, if a successful synchronization occurs,
it indicates that there
is a deletion of the (707) and an insertion of the (607) pattern.
In one embodiment, insertion is determined because the
inserted special pattern location is known. In the example
above, it is known that the insertion of the (607) pattern
occurred in 404, so a mapping of this pattern to one of the
most probable non-special patterns is to be done.

In one embodiment, deletion is identified by determining
that a deletion occurred before the second (706) pattern in
404. In one embodiment, all 3 consecutive levels before the
occurrence of the second pattern are compared to the 6-1-6
pattern and the most probable non-special pattern is mapped
to the 6-1-6 pattern. In such an embodiment, synchronization
also effectively reduces the error rate since correctly detected
insertions and deletions help correct the level information and
reduce the noise impact.

FIG. 5 is a flowchart 500 of an encoding method for gen-
erating the modified constrained code 119 which is used for
data synchronization via the maximum-likelihood decoder
106, according to one embodiment of the invention.

Although the blocks in the flowchart 500 are shown in a
particular order, the order of the actions can be modified.
Thus, the illustrated embodiments can be performed in a
different order, and some actions/blocks may be performed in
parallel. Additionally, one or more actions/blocks can be
omitted in various embodiments for generating the modified
constrained code 119 which is used for data synchronization
via the maximum-likelihood decoder 106. The blocks of the
flowchart 500 are discussed with reference to FIGS. 1-4. To
avoid repetitiveness, only the blocks are explained which
summarize the description above with reference to FIGS. 1-4.

Atblock 501, the appended bit-stream is initialized by the
encoder 104 to a NULL stream. The NULL stream ensures
that the appended bit-stream has a known state, i.e. all bits are
zeros, before it is modified with ones and zeros according to
the presence of special patterns in the data stream. At block
502, the encoder 104 appends a one bit to the appended
bit-stream (previously NULL) when a special pattern in the
data stream is mapped to another pattern, for example, the
bold and underlined pattern 707 at the left end of 401 is
mappedto 616 at the left end of 402. At block 503, the encoder
104 appends a zero bit to the appended bit-stream when the
special pattern in the data stream remains unchanged, for
example, the bold and underlined pattern 616 at the right ends
of 401 and 402. By appending one and zeros based on the
special patterns, a constrained code is generated by the
encoder 104.

At block 504, the constrained code is modified by the
encoder 104 by inserting bits that indicate which of a special

10

15

20

25

30

35

40

45

50

55

60

65

10

pattern, from among the special patterns, occurred in the data
stream. For example, for representing the pattern 7-0-7, three
bits may be used to indicate that a 7-0-7 pattern occurred in
the data stream.

At block 505, a predetermined bit pattern is appended by
the encoder 104 at the end of the appended bit-stream. In one
embodiment, the predetermined bit pattern is used to termi-
nate a Trellis which is generated by the synchronizer 120
during decoding and synchronization procedure.

FIG. 6 is a flowchart 600 of a decoding method for data
synchronization via the maximum-likelihood decoder 106,
according to one embodiment of the invention.

Although the blocks in the flowchart 600 are shown in a
particular order, the order of the actions can be modified.
Thus, the illustrated embodiments can be performed in a
different order, and some actions/blocks may be performed in
parallel. Additionally, one or more actions/blocks can be
omitted in various embodiments for data synchronization via
the maximum-likelihood decoder 106. The blocks of the
flowchart 600 are discussed with reference to FIGS. 1-5. To
avoid repetitiveness, only the blocks are explained which
summarize the description above with reference to FIGS. 1-5.

In one embodiment, the decoder 106 reads the modified
constrained code 119 from the NVM 102. In one embodi-
ment, the decoder 106 generates the reconstructed bit-stream
and at block 601 compares the reconstructed bit-stream with
a noisy appended bit-stream which includes insertions, dele-
tions, and errors. At block 602, the decoder 106 determines
whether there is a mismatch in the reconstructed bit-stream
and the noisy appended bit-stream in response to the compar-
ing at block 601. If there is no mismatch, then at block 603 the
two bit-streams are already synchronized and there is no need
to trigger/invoke the synchronizer 120. If there is a mismatch,
then the decoder 106 invokes the synchronizer 120 to execute
blocks 604-607.

At block 604, the synchronizer 120 computes deletion
probabilities in the reconstructed appended bit-stream. At
block 605, the synchronizer 120 computes insertion prob-
abilities in the reconstructed appended bit-stream. At block
606, the synchronizer 120 generates a Trellis to determine a
location and patterns of a most likely insertion or deletion in
the reconstructed appended bit-stream having states associ-
ated with the deletion and insertion probabilities computed in
blocks 604 and 605. Atblock 607, afinal pattern is mapped by
mapping in the reconstructed appended bit-stream at the most
likely location with the lost likely insertion or deletion deter-
mined by the Trellis. The synchronization procedures 604-
607 are discussed in more detail with an example in FIG. 7.

FIG. 7 is an exemplary Trellis 700 for data synchronization
for recovery from insertion and deletion errors, according to
one embodiment of the invention.

As mentioned in blocks 604 and 605, the synchronizer 120
generates insertion and deletion probabilities. Let ‘8’ be the
probability of a deletion, and ‘A’ be the probability of an
insertion. Let the RBER be r. As mention above, a special
pattern mapping to a non-special pattern creates a deletion. In
the example discussed with reference to FIG. 4, considering
the first left most bold and underlined pattern ot 401, the 7-0-7
pattern is mapped to the 6-1-6 pattern in 402, a deletion occurs
if any level in the 6-1-6 pattern is mapped to another level. In
such an embodiment, a 6-1-6 pattern can transit to a non-
special pattern with probability 6r. Hence the probability of
deletion, 6 is 6r. As mentioned above, an insertion occurs if
any non-special pattern maps to the 6-1-6 pattern. The most
probable patterns which can cause this are the 6-2-6, 5-1-6,
6-0-6, 6-1-5,7-1-6, and 6-1-7. Hence, the probability of inser-
tion, 12r/8>.

US 9,294,224 B2

11

Let the read level informationbe r=r, r, r5 . . . and the noisy
level information from the appended bit stream be y=y, y,
V5. ... Insertions/deletions occur in the r-sequence and errors
occur in the y-sequence. The aim of synchronization by the
synchronizer 120 is to align the ‘r’ sequence with the ‘y’ using
the ML estimate for insertion/deletion and errors. The syn-
chronizer 120 uses the fact that ‘r’ has insertions/deletions
and ‘y’ has errors to proceed with the synchronization pro-
cess.

So as not to obscure the embodiments of the invention, a
synchronization analysis for insertions/deletions and errors in
binary sequences is illustrated with the assumption of an
error-free ‘y.” The embodiment discussed herein, with refer-
ence to the above illustration, can be extended to error prone
‘y” without changing the essence of the embodiments of the
invention.

Consider three sequences ‘A’, ‘B,” and ‘t’ (time index) in
FIG. 7. ‘A’ is the ideal bit-stream (which corresponds to the
noiseless appended bit-stream) and ‘B’ is the bit-stream cor-
rupted by insertions/deletions (which corresponds to the
reconstructed appended bit-stream) and ‘t” is the time index
sequence.

Attime index 2, there is deletion. At time index 14, there is
an insertion. In one embodiment, the decoder 106 compares
sequences ‘A’ and ‘B’ starting from time index 1 and at the
time index of mismatch, the synchronizer 120 is invoked to
resynchronize sequence ‘A’ and ‘B.” In one embodiment, the
synchronizer 120 tries to estimate if insertions, deletions,
errors or a combination of these occurred, whichever is most-
probable. In one embodiment, a Trellis is constructed by the
synchronizer 120 to determine the estimate if insertions, dele-
tions, errors or a combination of these occurred, whichever is
most-probable.

In one embodiment, the synchronizer 120 invokes an ML
estimator to perform the above purpose. In one embodiment,
the ML estimator is a modified Viterbi detector (truncated
detector with a finite number of trellis sections) because a
complete/traditional Viterbi detector would be computation-
ally expensive.

As shown in FIG. 7, in one embodiment, the Trellis con-
struction is started by the synchronizer 120 when there is loss
of'synchronization and then the most likely insertion/deletion
pattern is traced to resynchronize the two sequences. As men-
tioned above, in the current analysis we assume that errors in
the appended bit-stream do not occur, i.e. an error-free ‘y.” In
one embodiment, the probability of different states in the
Trellis can be computed as a function of the probability of
deletion and insertion.

In one embodiment, the Trellis starts from a sync state. In
the example described above, since loss of sync occurs during
time index 2 of sequence ‘B, the bitunder consideration is bit
2 of sequence ‘B.’ For the first set of states emanating from the
sync state, the numbers for the states indicate the time indices
for the bit in sequence ‘A’ which syncs with bit 2 of sequence
‘B.’ There is an edge from the sync state to state 3 to indicate
bit 2 of sequence ‘B’ and bit 3 of sequence ‘A’ are the same if
one deletion occurs followed by no insertion/deletion.

The time index 2 for sequence ‘B’ syncs with time index 3
of'sequence ‘A’ considering one deletion, so the probability of
the edge connecting sync state to state 3 is given by d(1-9)
(1-A). Similarly, the state with number 5 indicates three dele-
tions followed by no insertion/deletions, hence its probability
is 83(1-8)(1-2). In one embodiment, since the (1-8)(1-A)
term is common to all the edges, it is not considered in the
calculations, as it does not change the estimate.

In one embodiment, the state with number 1 corresponds to
an insertion, i.e. highest probability of insertion. Since there

10

15

20

25

30

35

40

45

50

55

60

65

12

can be infinitely many states emanating from the sync state,
the Trellis is pruned. In one embodiment, depending on the
acceptable complexity, and the values of d and A, only those
branches which have significant probabilities are retained. In
one embodiment, if 3>>A, more deletions are considered than
insertion states.

The second section of the Trellis corresponds to bit in
sequence ‘B’ at time index 3. The Trellis can technically grow
indefinitely. There are various ways to make a decision. In one
embodiment, after a fixed number of Trellis sections, say ‘n’,
the state with the highest probability is selected and the syn-
chronization is obtained considering the insertion/deletion
combination given by that state. In one embodiment, the
number ‘n’ depends on the number of states per Trellis sec-
tion. In one embodiment, a decision is made by choosing the
survivor state as the state with the highest probability. In one
embodiment, once the survivor state is chosen, synchroniza-
tion is asserted.

In one embodiment, the Trellis constructed above can be
extended very easily to consider the case when the appended
bit-stream has errors, i.e. an error-prone y. In one embodi-
ment, a proper Trellis termination is required since truncation
of the Trellis can deteriorate performance. As discussed in
block 505, a fixed predetermined pattern is inserted at the end
of the appended bit-stream for Trellis termination. In one
embodiment, the terminating pattern is a non-zero string of
required length.

In one embodiment, synchronization completes when a
pattern (special or any forbidden pattern) is read to the
decoder 106 and is mapped to the closest allowable pattern (in
probabilistic sense) based on the Trellis. For example, if a
7-0-7 pattern is seen (or any forbidden pattern), it is mapped
to the closest allowable pattern (in probabilistic sense).

In one embodiment, for applications where level informa-
tion is available for decoding middle page also, there is more
flexibility in the design of the codes. In such an embodiment,
levels 0, 1, 2, and 3 can be grouped together and levels 4, 5, 6,
and 7 can be grouped together and the code design permits
level mapping within the groups but not between groups.
Such an embodiment ensures that the lower page bits are
untouched by the constrained encoding.

FIG. 8 is a system level diagram 1300 comprising a pro-
cessor and/or memory controller for generating a modified
constrained code by the encoder 104, the modified con-
strained code used for data synchronization via the maxi-
mum-likelihood decoder 106 in the memory controller,
according to one embodiment of the invention.

FIG. 8 also includes a machine-readable storage medium to
execute computer readable instructions to perform the meth-
ods of various embodiments. Elements of embodiments are
also provided as a machine-readable medium for storing the
computer-executable instructions (e.g., instructions to imple-
ment the flowchart and processes of FIG. 4-6). The machine-
readable medium may include, but is not limited to, flash
memory, optical disks, CD-ROMs, DVD ROMs, RAMs,
EPROMs, EEPROMs, magnetic or optical cards, or other
type of machine-readable media suitable for storing elec-
tronic or computer-executable instructions. For example,
embodiments of the invention may be downloaded as a com-
puter program (e.g., BIOS) which may be transferred from a
remote computer (e.g., a server) to a requesting computer
(e.g., a client) by way of data signals via a communication
link (e.g., a modem or network connection). In one embodi-
ment, the machine-readable media may be located in the SSD
101 (part of SOC 109).

In one embodiment, the system 1300 includes, but is not
limited to, a desktop computer, a laptop computer, a netbook,

US 9,294,224 B2

13

a tablet, a notebook computer, a personal digital assistant
(PDA), a server, a workstation, a cellular telephone, a mobile
computing device, a smart phone, an Internet appliance or any
other type of computing device. In another embodiment, the
system 1300 implements the methods disclosed herein and
may be a system on a chip (SOC) system.

In one embodiment, the processor 1310 has one or more
processing cores 1312 and 1312N, where 1312N represents
the Nth processor core inside the processor 1310 where N is
a positive integer. In one embodiment, the system 1300
includes multiple processors including processors 1310 and
1305, where processor 1305 has logic similar or identical to
logic of processor 1310. In one embodiment, the system 1300
includes multiple processors including processors 1310 and
1305 such that processor 1305 has logic that is completely
independent from the logic of processor 1310. In such an
embodiment, a multi-package system 1300 is a heteroge-
neous multi-package system because the processors 1305 and
1310 have different logic units. In one embodiment, the pro-
cessing core 1312 includes, but is not limited to, pre-fetch
logic to fetch instructions, decode logic to decode the instruc-
tions, execution logic to execute instructions and the like. In
one embodiment, the processor 1310 has a cache memory
1316 to cache instructions and/or data of the system 1300. In
another embodiment of the invention, the cache memory
1316 includes level one, level two and level three, cache
memory, or any other configuration of the cache memory
within the processor 1310.

In one embodiment, processor 1310 includes a memory
control hub (MCH) 1314, which is operable to perform func-
tions that enable the processor 1310 to access and communi-
cate with a memory 1330 that includes a volatile memory
1332 and/or a non-volatile memory 1334. In one embodi-
ment, the memory control hub (MCH) 1314 is positioned
outside of the processor 1310 as an independent integrated
circuit.

In one embodiment, the processor 1310 is operable to
communicate with the memory 1330 and a chipset 1320. In
one embodiment, the processor 1310 (same as 114 of FIG. 1)
and the chipset 1320 are part of the host 110 of FIG. 1. In one
embodiment, the chipset 1320 is coupled to a SSD 1380
(same as 101 of FIG. 1) via a SATA bus 1350 (same as bus 112
of FIG. 1). In one embodiment, the SSD 1380 includes
machine-readable medium for storing the computer-execut-
able instructions to implement the flowchart and processes of
FIGS. 4-6. In such an embodiment, the SSD 1380 executes
the computer-executable instructions when the SSD 1380 is
powered up.

In one embodiment, the processor 1310 is also coupled to
a wireless antenna 1378 to communicate with any device
configured to transmit and/or receive wireless signals. In one
embodiment, the wireless antenna interface 1378 operates in
accordance with, but is not limited to, the IEEE 802.11 stan-
dard and its related family, HomePlug AV (HPAV), Ultra
Wide Band (UWB), Bluetooth, WiMAX, or any form of
wireless communication protocol.

In one embodiment, the volatile memory 1332 includes,
but is not limited to, Synchronous Dynamic Random Access
Memory (SDRAM), Dynamic Random Access Memory
(DRAM), RAMBUS Dynamic Random Access Memory
(RDRAM), and/or any other type of random access memory
device. The non-volatile memory 1334 includes, but is not
limited to, flash memory (e.g., NAND, NOR), phase change
memory (PCM), read-only memory (ROM), electrically eras-
able programmable read-only memory (EEPROM), or any
other type of non-volatile memory device.

10

15

20

25

30

35

40

45

50

55

60

65

14

The memory 1330 stores information and instructions to be
executed by the processor 1310. In one embodiment, memory
1330 may also store temporary variables or other intermedi-
ate information while the processor 1310 is executing instruc-
tions. In one embodiment, chipset 1320 connects with pro-
cessor 1310 via Point-to-Point (PtP or P-P) interfaces 1317
and 1322. In one embodiment, chipset 1320 enables proces-
sor 1310 to connect to other modules in the system 1300. In
one embodiment of the invention, interfaces 1317 and 1322
operate in accordance with a PtP communication protocol
such as the INTEL® QuickPath Interconnect (QPI) or the
like.

In one embodiment, the chipset 1320 is operable to com-
municate with the processor 1310, 1305, display device 1340,
and other devices 1372, 1376, 1374, 1360, 1362, 1364, 1366,
1377, etc. In one embodiment, the chipset 1320 is also
coupled to a wireless antenna 1378 to communicate with any
device configured to transmit and/or receive wireless signals.

In one embodiment, chipset 1320 connects to a display
device 1340 via an interface 1326. In one embodiment, the
display 1340 includes, but is not limited to, liquid crystal
display (LCD), plasma, cathode ray tube (CRT) display, or
any other form of visual display device. In one embodiment of
the invention, processor 1310 and chipset 1320 are merged
into a single SOC. In addition, the chipset 1320 connects to
one or more buses 1350 and 1355 that interconnect various
modules 1374, 1360, 1362, 1364, and 1366. In one embodi-
ment, buses 1350 and 1355 may be interconnected together
via a bus bridge 1372 if there is a mismatch in bus speed or
communication protocol. In one embodiment, chipset 1320
couples with, but is not limited to, a non-volatile memory
1360, amass storage device(s) 1362, a keyboard/mouse 1364,
and a network interface 1366 via interface 1324, smart TV
1376, consumer electronics 1377, etc.

Inone embodiment, the mass storage device 1362 includes,
but is not limited to, a solid state drive, a hard disk drive, a
universal serial bus flash memory drive, or any other form of
computer data storage medium. In one embodiment, network
interface 1366 is implemented by any type of well known
network interface standard including, but not limited to, an
Ethernet interface, a universal serial bus (USB) interface, a
Peripheral Component Interconnect (PCI) Express interface,
awireless interface and/or any other suitable type of interface.
In one embodiment, the wireless interface operates in accor-
dance with, but is not limited to, the IEEE 802.11 standard
and its related family, HomePlug AV (HPAV), Ultra Wide
Band (UWB), Bluetooth, WiMAX, or any form of wireless
communication protocol.

While the modules shown in FIG. 5 are depicted as separate
blocks within the system 1300, the functions performed by
some of these blocks may be integrated within a single semi-
conductor circuit or may be implemented using two or more
separate integrated circuits. For example, although the cache
memory 1316 is depicted as a separate block within the pro-
cessor 1310, the cache memory 1316 can be incorporated into
the processor core 1312 respectively. In one embodiment, the
system 1300 may include more than one processor/process-
ing core in another embodiment of the invention.

Reference in the specification to an “embodiment,” “one
embodiment,” “some embodiments,” or “other embodi-
ments” means that a particular feature, structure, or charac-
teristic described in connection with the embodiments is
included in at least some embodiments, but not necessarily all
embodiments. The various appearances of an “embodiment,”
“one embodiment,” or some “embodiments™ are not neces-
sarily all referring to the same embodiments. If the specifica-
tion states a component, feature, structure, or characteristic

US 9,294,224 B2

15

“may,” “might,” or “could” be included, that particular com-
ponent, feature, structure, or characteristic is not required to
be included. If the specification or claim refers to “a” or “an”
element, that does not mean there is only one of the elements.
Ifthe specification or claims refer to “an additional” element,
that does not preclude there being more than one of the
additional element.
While the invention has been described in conjunction with
specific embodiments thereof, many alternatives, modifica-
tions and variations of such embodiments will be apparent to
those of ordinary skill in the art in light of the foregoing
description. The embodiments of the invention are intended
to embrace all such alternatives, modifications, and variations
as to fall within the broad scope of the appended claims.
I claim:
1. A method comprising:
receiving a constrained codeword from a non-volatile
memory (NVM) via a channel, wherein the NVM is a
multi-level cell memory in which cells that store differ-
ent bit combinations are accessible with different volt-
age levels and wherein data content of the NVM is
organized into pages of information where bits of a same
bit combination map to a different page, the constrained
codeword including an appended bit-stream; and

decoding the received constrained codeword with the use
of voltage level information for some but not all of the
pages by reconstructing the appended bit-stream and
invoking a synchronization procedure that applies a
maximum-likelihood (ML) estimator to estimate loca-
tions of any insertion, deletion, or error in the recon-
structed appended bit-stream.

2. The method of claim 1, wherein the appended bit stream
is generated by inserting bits that indicate which of a special
pattern, from among special patterns, occurred in an input.

3. The method of claim 2, wherein the appended bit-stream
is further generated by:

appending a one-bit to the appended bit-stream when the

special pattern is mapped to another pattern; and
appending a zero-bit to the appended bit-stream when the
special pattern remains unchanged.

4. The method of claim 2, wherein decoding comprises:

comparing the reconstructed appended bit-stream with a

noisy appended bit-stream which includes errors and
insertions or deletions, the comparing to determine any
mismatch between the reconstructed appended bit-
stream and the noisy appended bit-stream,

wherein the synchronization procedure is invoked when a

mismatch is determined.

5. The method of claim 2, wherein the special patterns for
a 3-bit multi-level-cell (MLC) include:

a 7-0-7 level pattern;

a 6-0-7 level pattern;

a 7-0-6 level pattern;

a 6-1-6 level pattern;

a 6-1-7 level pattern; and

a 7-1-6 level pattern.

6. The method of claim 1, wherein the synchronization
procedure comprises:

generating a Trellis to determine a location and pattern of a

most likely insertion or deletion in the reconstructed
appended bit-stream, the Trellis having states with asso-
ciated deletion and insertion probabilities; and
mapping a pattern, in the reconstructed appended bit-
stream, at the most likely location with the most likely
insertion or deletion determined by the Trellis.

7. The method of claim 6, wherein the synchronization

procedure comprises:

10

15

20

25

30

35

45

16

computing the deletion probabilities in the reconstructed

appended bit-stream; and

computing the insertion probabilities in the reconstructed

appended bit-stream.

8. The method of claim 6 further comprises:

appending a predetermined bit pattern, at the end of the

appended bit-stream, to terminate the Trellis.

9. The method of claim 8, wherein the predetermined bit
pattern is a non-zero bit pattern.

10. The method of claim 1, wherein the ML estimator is a
truncated Viterbi detector to estimate whether an insertion,
deletion, or an error occurred in the reconstructed appended
bit-stream.

11. The method of claim 1 further comprises:

initializing the appended bit-stream to a null stream.

12. The method of claim 1, wherein the NVM is a NAND
flash memory.

13. The method of claim 1, wherein the appended bit-
stream is a variable length bit-stream.

14. A memory controller comprising:

a decoder circuit to:

receive a constrained codeword from a non-volatile
memory (NVM) via a channel, wherein the NVM is a
multi-level cell memory in which cells that store dif-
ferent bit combinations are accessible with different
voltage levels and wherein data content of the NVM is
organized into pages of information where bits of a
same bit combination map to a different page, the
constrained codeword including an appended bit-
stream; and

decode the received constrained codeword with the use
of'voltage level information for some but not all of the
pages by reconstructing the appended bit-stream and
invoking a synchronization procedure that applies a
maximum-likelihood (ML) estimator to estimate
locations of any insertion, deletion, or error in the
reconstructed appended bit-stream.

15. The memory controller of claim 14 further comprising:

an encoder circuit to:

generate the appended bit stream by inserting bits that
indicate which of a special pattern, from among spe-
cial patterns, occurred in an input;

append a one-bit to the appended bit-stream when the
special pattern is mapped to another pattern; and

append a zero-bit to the appended bit-stream when the
special pattern remains is unchanged.

16. The memory controller of claim 15, wherein the
encoder circuit is operable to:

append a predetermined bit pattern, at the end of the

appended bit-stream, to terminate the Trellis.

17. The memory controller of claim 16, wherein the pre-
determined bit pattern is a non-zero bit pattern.

18. The memory controller of claim 15, wherein the
encoder is to:

initialize the appended bit-stream to a null stream.

19. The memory controller of claim 14, wherein the
decoder circuit is operable to:

compare the reconstructed appended bit-stream with a

noisy appended bit-stream which includes errors and
insertions or deletions, the comparison to determine any
mismatch between the reconstructed appended bit-
stream and the noisy appended bit-stream,

wherein the synchronization procedure is invoked when a

mismatch is determined.

20. The memory controller of claim 14, wherein the
decoder circuit is operable to perform the synchronization
procedure by:

US 9,294,224 B2

17

generating a Trellis to determine a location and pattern of a
most likely insertion or deletion in the reconstructed
appended bit-stream, the Trellis having states with asso-
ciated deletion and insertion probabilities; and

mapping a pattern, in the reconstructed appended bit-
stream, at the most likely location with the most likely
insertion or deletion determined by the Trellis.

21. The memory controller of claim 20, wherein the

decoder circuit is further operable to:
compute the deletion probabilities in the reconstructed
appended bit-stream; and
compute the insertion probabilities in the reconstructed
appended bit-stream.
22. The memory controller of claim 14, wherein the ML
estimator is a truncated Viterbi detector to estimate whether
an insertion, deletion, or an error occurred in the recon-
structed appended bit-stream.
23. The memory controller of claim 14, wherein the NVM
is a NAND flash memory.
24. A system comprising:
one or more processors coupled to a memory controller, the
memory controller coupled to a non-volatile memory
(NVM) via a channel, wherein the NVM is a multi-level
cell memory in which cells that store different bit com-
binations are accessible with different voltage levels and
wherein data content of the NVM is organized into pages
of'information where bits of a same bit combination map
to a different page, the memory controller comprises:
a decoder circuit to:
receive a constrained codeword from the NVM via the
channel, the constrained codeword including an
appended bit-stream; and

decode the received constrained codeword with the use
of'voltage level information for some but not all of the
pages by reconstructing the appended bit-stream and
invoking a synchronization procedure that applies a
maximum-likelihood (ML) estimator to estimate
locations of any insertion, deletion, or error in the
reconstructed appended bit-stream; and
a display unit to display stored content.
25. The system of claim 24 further comprises:
an encoder circuit to:
generate the appended bit stream by inserting bits that
indicate which of a special pattern, from among spe-
cial patterns, occurred in an input;

append a one-bit to the appended bit-stream when the
special pattern is mapped to another pattern; and

w

10

15

25

30

40

45

18

append a zero-bit to the appended bit-stream when the
special pattern remains is unchanged.

26. The system of claim 25, wherein the encoder circuit is
operable to:

append a predetermined bit pattern, at the end of the

appended bit-stream, to terminate the Trellis.

27. The system of claim 24, wherein the decoder circuit is
operable to:

compare the reconstructed appended bit-stream with a

noisy appended bit-stream which includes errors and
insertions or deletions, the comparing to determine any
mismatch between the reconstructed appended bit-
stream and the noisy appended bit-stream,

wherein the synchronization procedure is invoked when a

mismatch is determined.

28. The system of claim 24, wherein the decoder circuit is
operable to perform the synchronization procedure by:

generating a Trellis to determine a location and pattern of a

most likely insertion or deletion in the reconstructed
appended bit-stream, the Trellis having states with asso-
ciated deletion and insertion probabilities; and
mapping a pattern, in the reconstructed appended bit-
stream, at the most likely location with the most likely
insertion or deletion determined by the Trellis.
29. The system of claim 24, wherein the NVM is a NAND
flash memory.
30. An article of manufacture having a machine storage
medium containing machine executable instructions that
when executed cause a processor to perform a method, the
method comprising:
receiving a constrained codeword from a non-volatile
memory (NVM) via a channel, wherein the NVM is a
multi-level cell memory in which cells that store differ-
ent bit combinations are accessible with different volt-
age levels and wherein data content of the NVM is
organized into pages of information where bits of a same
bit combination map to a different page, the constrained
codeword including an appended bit-stream; and

decoding the received constrained codeword with the use
of voltage level information for some but not all of the
pages by reconstructing the appended bit-stream and
invoking a synchronization procedure that applies a
maximum-likelihood (ML) estimator to estimate loca-
tions of any insertion, deletion, or error in the recon-
structed appended bit-stream.

#* #* #* #* #*

